Bài 2: Căn thức bậc hai và hằng đẳng thức căn bậc hai của bình phương

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Jung Yu Mi

Cho biểu thức P\(=\dfrac{8\sqrt{x}-x-31}{x-8\sqrt{x}+15}-\dfrac{\sqrt{x}+5}{\sqrt{x}-3}-\dfrac{3\sqrt{x}-1}{5-\sqrt{x}}\)

a) Rút gọn P

b) Tính giá trị của x để P<1

Nguyễn Việt Lâm
22 tháng 2 2019 lúc 18:31

ĐK: \(x\ge0;x\ne\left\{9;25\right\}\)

\(P=\dfrac{8\sqrt{x}-x-31}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-5\right)}-\dfrac{\sqrt{x}+5}{\sqrt{x}-3}+\dfrac{3\sqrt{x}-1}{\sqrt{x}-5}\)

\(=\dfrac{8\sqrt{x}-x-31}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-5\right)}-\dfrac{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-5\right)}+\dfrac{\left(3\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-5\right)}\)

\(=\dfrac{8\sqrt{x}-x-31-x+25+3x-9\sqrt{x}-\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-5\right)}\)

\(=\dfrac{x-2\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-5\right)}=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-5\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}-5}\)

b/ \(P< 1\Leftrightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}-5}< 1\Leftrightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}-5}-1< 0\)

\(\Leftrightarrow\dfrac{\sqrt{x}+1-\sqrt{x}+5}{\sqrt{x}-5}< 0\Leftrightarrow\dfrac{6}{\sqrt{x}-5}< 0\)

\(\Leftrightarrow\sqrt{x}-5< 0\Rightarrow x< 25\)

Vậy để \(P< 1\) thì \(0\le x< 25;x\ne9\)


Các câu hỏi tương tự
Nguyễn thị thu trang
Xem chi tiết
Nguyễn Thế Phúc Anh
Xem chi tiết
nguyễn thị thanh
Xem chi tiết
Vie-Vie
Xem chi tiết
Bống
Xem chi tiết
KYAN Gaming
Xem chi tiết
Bống
Xem chi tiết
Phạm Thùy Dương
Xem chi tiết
Thanh Mai Đinh
Xem chi tiết