Ôn tập chương 1: Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thùy Dương

Cho biểu thức: \(P=\dfrac{3a+\sqrt{9a}-3}{a+\sqrt{a}-2}-\dfrac{\sqrt{a}-2}{\sqrt{a}-1}+\dfrac{1}{\sqrt{a}+2}-1\)

a, Rút gọn P

b, Tìm a để \(\left|P\right|=1\)

c, Tìm \(a\in N\) để \(P\in N\)

katherina
20 tháng 4 2017 lúc 10:23

ĐKXĐ: \(a\ne1\)

a/ P = \(\dfrac{3a+3\sqrt{a}-3-\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)+\sqrt{a}-1-\left(a+\sqrt{a}-2\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}\)

= \(\dfrac{a+3\sqrt{a}+2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}\)

= \(\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}\)

= \(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}\)

b/ \(|P|=1\Leftrightarrow P=\pm1\)

* Với P = 1 thì \(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}=1\Leftrightarrow\sqrt{a}+1=\sqrt{a}-1\) (loại)

* Với P = -1 thì \(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}=-1\Leftrightarrow\sqrt{a}+1=1-\sqrt{a}\Leftrightarrow2\sqrt{a}=0\Leftrightarrow a=0\left(tm\right)\)

c/ P = \(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}=\dfrac{\sqrt{a}-1+2}{\sqrt{a}-1}=1+\dfrac{2}{\sqrt{a}-1}\)

Để P \(\in N\) thì \(2⋮\sqrt{a}-1\) \(\Leftrightarrow\sqrt{a}-1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)

Đối chiếu với đk: a \(\ne1\) ta thấy a = 0; 4 và 9

Vậy để P \(\in N\) thì a = 0; a = 4; a = 9.


Các câu hỏi tương tự
Võ Thùy Trang
Xem chi tiết
Nguyen Vo  Song Nga
Xem chi tiết
Triết Phan
Xem chi tiết
Aocuoi Huongngoc Lan
Xem chi tiết
CandyK
Xem chi tiết
Nguyên Thảo Lương
Xem chi tiết
nguyenyennhi
Xem chi tiết
vũ thị lan
Xem chi tiết
hilo
Xem chi tiết