ĐKXĐ: \(a\ne1\)
a/ P = \(\dfrac{3a+3\sqrt{a}-3-\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)+\sqrt{a}-1-\left(a+\sqrt{a}-2\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}\)
= \(\dfrac{a+3\sqrt{a}+2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}\)
= \(\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}\)
= \(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}\)
b/ \(|P|=1\Leftrightarrow P=\pm1\)
* Với P = 1 thì \(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}=1\Leftrightarrow\sqrt{a}+1=\sqrt{a}-1\) (loại)
* Với P = -1 thì \(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}=-1\Leftrightarrow\sqrt{a}+1=1-\sqrt{a}\Leftrightarrow2\sqrt{a}=0\Leftrightarrow a=0\left(tm\right)\)
c/ P = \(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}=\dfrac{\sqrt{a}-1+2}{\sqrt{a}-1}=1+\dfrac{2}{\sqrt{a}-1}\)
Để P \(\in N\) thì \(2⋮\sqrt{a}-1\) \(\Leftrightarrow\sqrt{a}-1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
Đối chiếu với đk: a \(\ne1\) ta thấy a = 0; 4 và 9
Vậy để P \(\in N\) thì a = 0; a = 4; a = 9.