Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trúc Nguyễn

cho biểu thức: P = \(\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right):\dfrac{2\sqrt{x}}{x-4}\)

a, Tìm điều kiện của x để P được xác định. Rút gọn P

b, Tìm x để P > 4

Nguyễn Lê Phước Thịnh
13 tháng 12 2020 lúc 18:09

a) ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne4\end{matrix}\right.\)

Ta có: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right):\dfrac{2\sqrt{x}}{x-4}\)

\(=\left(\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\cdot\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right):\dfrac{2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\left(\dfrac{x+2\sqrt{x}+x-2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\dfrac{2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{2x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{2\sqrt{x}}\)

\(=\sqrt{x}\)

b) Để P>4 thì \(\sqrt{x}>4\)

hay x>16

Kết hợp ĐKXĐ, ta được: x>16

Vậy: Khi x>16 thì P>4

Lê Quang Phat
13 tháng 12 2020 lúc 18:11

undefined


Các câu hỏi tương tự
KYAN Gaming
Xem chi tiết
Trúc Nguyễn
Xem chi tiết
Tuyết Linh Linh
Xem chi tiết
ngọc linh
Xem chi tiết
Võ Thùy Trang
Xem chi tiết
Big City Boy
Xem chi tiết
Mưa Bong Bóng
Xem chi tiết
nguyen ngoc son
Xem chi tiết
nguyen ngoc son
Xem chi tiết