<=>\((\frac{1-a\sqrt{a}+\sqrt{a}(1-\sqrt{a})}{1-\sqrt{a}})(\frac{1+a\sqrt{a}-\sqrt{a}(1+\sqrt{a})}{1+\sqrt{a}})\)
<=>\((\frac{\left(1-\sqrt{a}\right)\left(1+2\sqrt{a}+a\right)}{1-\sqrt{a}}).(\frac{\left(1+\sqrt{a}\right)\left(1-2\sqrt{a}+a\right)}{1+\sqrt{a}}\)
<=>\((1+2\sqrt{a}+a)\left(1-2\sqrt{a}+a\right)\)
<=>\((a-1)^2\)
Để P < \(7-4\sqrt{3}\)
<=> \((a-1)^2< 7-4\sqrt{3}\)
<=> \((a-1)^2< \left(2-\sqrt{3}\right)^2\)
<=> \(a-1< 2-\sqrt{3}\)
<=> a < \(3-\sqrt{3}\)