Cho biểu thức A=\(\left|x-2010\right|+\left|x-2012\right|+\left|x-2014\right|\)
Tìm giá trị nhỏ nhất của A.
a, Định m để 3 đường thẳng 3x + 2y = 4; 2x - y = m và x + 2y = 3 đồng quy
b, Với giá trị nguyên nào của m để hai đường thẳng của hệ cắt nhau tại 1 điểm nằm trong góc phần tư thứ 4 của hệ tọa độ Oxy
c, Định m để hệ có nghiệm duy nhất (x; y) sao cho P = x2 + y2 đạt giá trị nhỏ nhất
Tìm giá trị nhỏ nhất của biểu thức : M=\(\left|x+5\right|+\left|x-2\right|+\left(y-3\right)^2\)
Tìm tất cả các giá trị của tham số m để hàm số \(y=\left(m^2-6m\right)x-\sqrt{2m-3}\)nghịch biến trên khoảng (-3; 5)
giá trị nhỏ nhất của hàm số y=x-2 căn x+2 :
Tìm giá trị nhỏ nhất của hàm số y= x2(1-6x)
Có bao nhiêu giá trị nguyên của tham số m trên đoạn
[-2020; 2020] để hàm số f(x) = \(\dfrac{\sqrt{x^2-2x+3}}{x^2-2x+m-1}\) có tập xác định là R?
Tìm tất cả giá trị của m để hs:
a)y= (m-1)x+1 đồng biến trên R
b)y= -mx+m+1 nghịch biến trên R
c)y= -(\(m^{2}\)+1)x+m+1 nghịch biến trên R
d)y= \(\dfrac{1}{m-1}\)x+2 đồng biến trên R