\(A=\left|x-2010\right|+\left|x-2012\right|+\left|x-2014\right|\)
\(=\left|x-2012\right|+\left|2014-x\right|+\left|x-2010\right|\)
\(\ge\left|x-2012\right|+\left|2014-x+x-2010\right|\)
\(=\left|x-2012\right|+4\)
Vì \(\left|x-2012\right|\ge0\forall x\)
\(\Rightarrow\left|x-2012\right|+4\ge4\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=2012\)
Vậy MIN \(A=4\Leftrightarrow x=2012\)