\(N=\frac{2012}{2012+\left(x+1\right)^2}=\frac{2012+\left(x+1\right)^2-\left(x+1\right)^2}{2012+\left(x+1\right)^2}=\frac{2012+\left(x+1\right)^2}{2012+\left(x+1\right)^2}-\frac{\left(x+1\right)^2}{2012+\left(x+1\right)^2}\)
\(=1-\frac{\left(x+1\right)^2}{2012+\left(x+1\right)^2}\)
Vì \(\left(x+1\right)^2\ge0\forall x\) \(\Rightarrow2012+\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow\frac{\left(x+1\right)^2}{2012+\left(x+1\right)^2}\ge0\forall x\)
\(\Rightarrow1-\frac{\left(x+1\right)^2}{2012+\left(x+1\right)^2}\le1\)
Dấu "\(=\)" xảy ra \(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy GTLN của \(N=1\) tại \(x=-1\)