a/ \(B=\left(\dfrac{x^2}{y}-\dfrac{y^2}{x}\right)\left(\dfrac{x+y}{x^2+xy+y^2}+\dfrac{1}{x-y}\right)\)
\(=\dfrac{x^3-y^3}{xy}\cdot\dfrac{\left(x+y\right)\left(x-y\right)+x^2+xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{x^3-y^3}{xy}\cdot\dfrac{x^2-y^2+x^2+xy+y^2}{x^3-y^3}\)
\(=\dfrac{2x^2+xy}{xy}=\dfrac{x\left(2x+y\right)}{xy}=\dfrac{2x+y}{y}\)
b/ Khi x = -1/2 và y = 3 ta có:
\(B=\dfrac{2\cdot\left(-\dfrac{1}{2}\right)+3}{3}=\dfrac{-1+3}{3}=\dfrac{2}{3}\)
a) Với ĐK: x khác 0, y khác 0, x khác y ta có:
\(B=\left(\dfrac{x^2}{y}-\dfrac{y^2}{x}\right).\left(\dfrac{x+y}{x^2+xy+y^2}+\dfrac{1}{x-y}\right)\)
\(=\left(\dfrac{x^3}{xy}-\dfrac{y^3}{xy}\right).\left[\dfrac{\left(x-y\right)\left(x+y\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\dfrac{x^2+xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\right]\)
\(=\dfrac{x^3-y^3}{xy}.\dfrac{x^2-y^2+x^2+xy+y^2}{x^3-y^3}\)
\(=\dfrac{2x^2+xy}{xy}=\dfrac{x\left(2x+y\right)}{xy}=\dfrac{2x+y}{y}=\dfrac{2x}{y}+1\)
Vậy....
b) Thay số vào rồi tính nha
Lâu ngày ko làm toán có gì sai sót thông cảm