ĐKXĐ: \(x^2\ge1\Rightarrow\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\)
\(A=\sqrt{x^2-1+2\sqrt{x^2-1}+1}-\sqrt{x^2-1-2\sqrt{x^2-1}+1}\)
\(=\sqrt{\left(\sqrt{x^2-1}+1\right)^2}-\sqrt{\left(\sqrt{x^2-1}-1\right)^2}\)
\(=\sqrt{x^2-1}+1-\left|\sqrt{x^2-1}-1\right|\)
Do \(x\ge\sqrt{2}\Rightarrow\sqrt{x^2-1}\ge\sqrt{2-1}=1\)
\(\Rightarrow\sqrt{x^2-1}-1\ge0\Rightarrow\left|\sqrt{x^2-1}-1\right|=\sqrt{x^2-1}-1\)
\(\Rightarrow A=\sqrt{x^2-1}+1-\sqrt{x^2-1}+1=2\)