Hmmm bài này nhìn như này lẻ với khó đối với hs đại trà 9 nên mình nghĩ là `A=(x\sqrtx+1)/(x-1)-(x-1)/(\sqrtx-1)` hợp lý hơn.
`đkxđ;x>=0,x ne 1`
`A=((\sqrtx+1)(x-\sqrtx+1))/(x-1)-(x-1)/(\sqrtx-1)`
`=(x-\sqrtx-1)/(\sqrt-1)-(x-1)/(\sqrtx-1)`
`=(x-\sqrtx-1-x+1)/(\sqrtx-1)`
`=(-\sqrtx)/(\sqrtx-1)`
Ta có: \(\dfrac{x\sqrt{x}+1}{x-1}-\dfrac{x-1}{\sqrt{x}+1}\)
\(=\dfrac{x\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(x-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x\sqrt{x}+1-x\sqrt{x}+x+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x+\sqrt{x}+1}{x-1}\)