\(\dfrac{-3}{x+2}\) \(-\)\(\dfrac{2}{x-2}\) + \(\dfrac{4x}{x^2-4}\) (với x \(\ne\) 2 và x \(\ne\) \(-\) 2).
a Rút gọn biểu thức B.
b Tìm x để B = \(\dfrac{1}{4}\)
giải các phương trình sau:
a)2x(x-2)+5(x-2)=0
b)\(\dfrac{3x-4}{2}-\dfrac{4x+1}{3}\)
c)\(\dfrac{2x}{x-1}-\dfrac{x}{x+1}=1\)
Bài 1:Giải phương trình sau:
\(8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)^2-4\left(x^2+\dfrac{1}{x^2}\right)\left(x+\dfrac{1}{x}\right)^2=\left(x+4\right)^2\)
Bài 2:Giải bất phương trình sau:
a,\(2x\left(6x-1\right)>\left(3x-2\right)\left(4x+3\right)\)
b,\(\dfrac{2\left(x+1\right)}{3}-2\ge\dfrac{x-2}{2}\)
B=(\(\dfrac{2x+x^2}{x^3-1}\)-\(\dfrac{1}{x-1}\)):(1-\(\dfrac{x+2}{x^2+x+1}\))
a0 Tính B=6
b.Tìm x để B=1
Giải bất phương trình:
a) 1 + \(\dfrac{x+1}{3}\) > \(\dfrac{2x-1}{6}\) - 2
b) \(\dfrac{5x^2-3}{5}\) + \(\dfrac{3x-1}{4}\) < \(\dfrac{x\left(2x+3\right)}{2}\) - 5
Giải bất phương trình:
\(\dfrac{15x-2}{4}\) - \(\dfrac{x^2+1}{3}\) > \(\dfrac{x\left(1-2x\right)}{6}\) + \(\dfrac{x-3}{2}\)
giải các phương trình sau:
a) (x^2-9) (x-7)=(x+3) (x^2+6)
b) x+2/x+3 - x+1/x-1 = 4/x^2+2x-3
c) x^2 -x-20=0
d) 2x^3+x-2x^2=1
e) giá trị tuyệt đối của 7-x +2x=3
f)giá trị tuyệt đối của 2x-3 -4x-9=0
g) giá trị tuyệt đối 3x+5=giá trị tuyệt đối 2-5x.
1)4x-20=0 ; 2) 5x+15=0 ; 3) 3x-5=7x+2 ; 4) 4x-(x-1)=2(1+x) ; 5) x2 -2x=0 ; 6) 2(3x-5)-3(x-2)=3(x+4) ; 7) (x+3)(2x-7)=0
8) 5x(x-3)+2x-6=0 ; 9) (3x-1)(2x-1)-(3x-1)(x+2)=0
10)|2x-1|+1=8 ; 11) |x-2|=3x+1 ; 12) |2x|=21-x
Giải các phương trình nha mọi người ^_^
\(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x+3}+\dfrac{4}{x^2+2x-3}=1\)