Lời giải:
\(A=\frac{2a^2+4}{(1-a)(1+a)}-\frac{1-\sqrt{a}+1+\sqrt{a}}{(1+\sqrt{a})(1-\sqrt{a})}=\frac{2a^2+4}{(1-a)(1+a)}-\frac{2}{1-a}\)
\(=\frac{2a^2+4}{(1-a)(1+a)}-\frac{2(1+a)}{(1-a)(1+a)}=\frac{2a^2-2a+2}{(1-a)(1+a)}=\frac{2(a^2-a+1)}{1-a^2}\)
Lời giải:
\(A=\frac{2a^2+4}{(1-a)(1+a)}-\frac{1-\sqrt{a}+1+\sqrt{a}}{(1+\sqrt{a})(1-\sqrt{a})}=\frac{2a^2+4}{(1-a)(1+a)}-\frac{2}{1-a}\)
\(=\frac{2a^2+4}{(1-a)(1+a)}-\frac{2(1+a)}{(1-a)(1+a)}=\frac{2a^2-2a+2}{(1-a)(1+a)}=\frac{2(a^2-a+1)}{1-a^2}\)
Cho biểu thức \(M=(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}):(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1})\) ( với a>0; a \(\ne\) 1, a \(\ne\) 4)
a. Rút gọn M
b. Tìm a để M<\(\dfrac{1}{6}\)
1.Cho biểu thức Q=\(\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right)\): \(\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)a) Rút gọn Q với a>0, a\(\ne4,a\ne\)1b) Tìm giá trị của a để Q dương2.Cho biểu thức P=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)a) Tìm điều kiện của x để P xác định và rút gọn Pb) Tìm các giá trị của x để P<0c) Tính giá trị của P khi \(x=4-2\sqrt{3}\)
Cho biểu thức P = \(\left(\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\right):\dfrac{\sqrt{x}}{2-\sqrt{x}}\) (với x>0; x\(\ne\)0)
a,Rút gọn biểu thức P và tìm x để P = \(\dfrac{-3}{5}\)
b,Tìm GTNN của biểu thức A=P . \(\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
cho biểu thức:
\(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)
a, rút gọn
b, chứng minh: A > 0 với mọi x ≥ 0, x ≠ 1
Cho biểu thức \(M=\left(\dfrac{1}{a-\sqrt{a}}+\dfrac{1}{\sqrt{a}-1}\right):\dfrac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)
a/ Rút gọn M với \(a>0,a\ne1\)
b/ So sánh M với 1
c/ Tính giá trị M khi \(a=3-2\sqrt{2}\)
Cho biểu thức A=(\(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\)) : (\(1-\dfrac{3-\sqrt{x}}{\sqrt{x}+1x}\))
1.Tìm điều kiện xác định của biểu thức A.
2.Rút gọn A.
3.Tính giá trị biểu thức A khi x = \(\dfrac{1}{6-2\sqrt{5}}\).
4.Tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên.
5.Tìm giá trị của x để biểu thức A bằng -3.
6.Tìm giá trị của x để biểu thức A nhỏ hơn -1.
7.Tìm giá trị của x để biểu thức A lớn hơn \(\dfrac{-2}{\sqrt{x}+1}\)
Cho biểu thức M= \(\left(\dfrac{a\sqrt{a}-1}{\sqrt{a}-1}+\sqrt{a}\right).\dfrac{1}{\sqrt{a}+1}\)Với ( \(a\ge0,a\ne1\))a) Rút gọn biểu thức Mb) Tính giá trị của M tại a = 2020-2\(\sqrt{2019}\)
Cho biểu thức \(A=\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right)\cdot\left(\dfrac{a-\sqrt{a}}{\sqrt{a}+1}-\dfrac{a+\sqrt{a}}{\sqrt{a}-1}\right)\)
a. Rút gọn A
b. Tìm \(x\) để \(A>-6\)
c. Tính A khi \(a^2-3=0\)
Rút gọn biểu thức với a>0: A=\(\dfrac{a^2-\sqrt{a}}{\left(\sqrt{a}+1\right)\left(a+\sqrt{a}+1\right)}\)