a) \(A=\left(\dfrac{2x}{x^3+x-x^2-1}-\dfrac{1}{x-1}\right):\left(\dfrac{1+x}{x^2+1}\right)\left(x\ne1;x\ne-1\right)\)
\(A=\left[\dfrac{2x}{x^2\left(x-1\right)+\left(x-1\right)}-\dfrac{1}{x-1}\right]:\left(\dfrac{1+x}{x^2+1}\right)\)
\(A=\left[\dfrac{2x}{\left(x^2+1\right)\left(x-1\right)}-\dfrac{x^2+1}{\left(x^2+1\right)\left(x-1\right)}\right]\cdot\dfrac{x^2+1}{x+1}\)
\(A=\dfrac{-x^2+2x-1}{\left(x^2+1\right)\left(x-1\right)}\cdot\dfrac{x^2+1}{x+1}\)
\(A=\dfrac{-\left(x^2-2x+1\right)}{\left(x+1\right)\left(x-1\right)}\)
\(A=\dfrac{-\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}\)
\(A=\dfrac{-\left(x-1\right)}{x+1}\)
b) \(A=\dfrac{2}{7}\) khi \(\dfrac{-\left(x-1\right)}{x+1}=\dfrac{2}{7}\)
\(\Leftrightarrow2\left(x+1\right)=-7\left(x-1\right)\)
\(\Leftrightarrow2x+2=-7x+7\)
\(\Leftrightarrow2x+7x=7-2\)
\(\Leftrightarrow9x=5\)
\(\Leftrightarrow x=\dfrac{5}{9}\left(tm\right)\)
c) \(B=\dfrac{A}{1-x}=\dfrac{1-x}{x+1}:\left(1-x\right)=\dfrac{1}{x+1}\)
⇒ Để B có giá trị lớn nhất thì \(x+1\) phải có giá trị nhỏ nhất nhưng \(x+1>0\)
\(\Rightarrow x>-1\)
Bổ xung: x nguyên
\(\Rightarrow x=0\)
Vậy: ...