Bài 8: Rút gọn biểu thức chứa căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Chu Minh Đức

Cho biểu thức A= \(\frac{x-\sqrt{x}}{x-9}\) + \(\frac{1}{\sqrt{x}+3}\) -\(\frac{1}{\sqrt{x}-3}\)

a) rút gọn biểu thức A b)Tính giá trị của A khi x=5+\(2\sqrt{6}\)

c) Tìm x để A=\(\frac{3}{5}\) d)Tìm x để A có GTNN, tìm GTNN đó

Võ Hồng Phúc
27 tháng 9 2020 lúc 22:08

a, ĐKXĐ: \(x\ge0;x\ne9\)

\(A=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)+\sqrt{x}-3-\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{x-\sqrt{x}-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}+2}{\sqrt{x}+3}\)

b, \(x=5+2\sqrt{6}=2+3+2\sqrt{3}.\sqrt{2}=\left(\sqrt{3}+\sqrt{2}\right)^2\)

\(\Rightarrow\sqrt{x}=\sqrt{3}+\sqrt{2}\)

\(\Rightarrow A=\frac{\sqrt{x}+2}{\sqrt{x}+3}=\frac{\sqrt{3}+\sqrt{2}+2}{\sqrt{3}+\sqrt{2}+3}\)

c, \(A=\frac{\sqrt{x}+2}{\sqrt{x}+3}=\frac{3}{5}\Leftrightarrow5\sqrt{x}+10=3\sqrt{x}+9\)

\(\Leftrightarrow2\sqrt{x}=-1\Rightarrow\) không tồn tại giá trị \(x\) thỏa mãn

d, \(A=\frac{\sqrt{x}+2}{\sqrt{x}+3}\Leftrightarrow\sqrt{x}.A+3A=\sqrt{x}+2\)

\(\Leftrightarrow\sqrt{x}\left(A-1\right)=2-3A\)

\(\Leftrightarrow\frac{2-3A}{A-1}=\sqrt{x}\ge0\Rightarrow\frac{2-3A}{A-1}\ge0\)

Do \(A=\frac{\sqrt{x}+2}{\sqrt{x}+3}< 1\Rightarrow A-1< 0\) nên \(2-3A\le0\Leftrightarrow A\ge\frac{2}{3}\)

\(\Rightarrow MinA=\frac{2}{3}\Leftrightarrow\frac{\sqrt{x}+2}{\sqrt{x}+3}=\frac{2}{3}\Leftrightarrow x=0\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Lê Nguyễn Ngọc Trâm
Xem chi tiết
Hoan Mạnh
Xem chi tiết
kietdeptrai
Xem chi tiết
Ngoc Huyen
Xem chi tiết
Tutu
Xem chi tiết
thu trang
Xem chi tiết
kietdeptrai
Xem chi tiết
Walker Anh
Xem chi tiết
illumina
Xem chi tiết