a, ĐKXĐ: \(x\ge0;x\ne9\)
\(A=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)+\sqrt{x}-3-\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{x-\sqrt{x}-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}+2}{\sqrt{x}+3}\)
b, \(x=5+2\sqrt{6}=2+3+2\sqrt{3}.\sqrt{2}=\left(\sqrt{3}+\sqrt{2}\right)^2\)
\(\Rightarrow\sqrt{x}=\sqrt{3}+\sqrt{2}\)
\(\Rightarrow A=\frac{\sqrt{x}+2}{\sqrt{x}+3}=\frac{\sqrt{3}+\sqrt{2}+2}{\sqrt{3}+\sqrt{2}+3}\)
c, \(A=\frac{\sqrt{x}+2}{\sqrt{x}+3}=\frac{3}{5}\Leftrightarrow5\sqrt{x}+10=3\sqrt{x}+9\)
\(\Leftrightarrow2\sqrt{x}=-1\Rightarrow\) không tồn tại giá trị \(x\) thỏa mãn
d, \(A=\frac{\sqrt{x}+2}{\sqrt{x}+3}\Leftrightarrow\sqrt{x}.A+3A=\sqrt{x}+2\)
\(\Leftrightarrow\sqrt{x}\left(A-1\right)=2-3A\)
\(\Leftrightarrow\frac{2-3A}{A-1}=\sqrt{x}\ge0\Rightarrow\frac{2-3A}{A-1}\ge0\)
Do \(A=\frac{\sqrt{x}+2}{\sqrt{x}+3}< 1\Rightarrow A-1< 0\) nên \(2-3A\le0\Leftrightarrow A\ge\frac{2}{3}\)
\(\Rightarrow MinA=\frac{2}{3}\Leftrightarrow\frac{\sqrt{x}+2}{\sqrt{x}+3}=\frac{2}{3}\Leftrightarrow x=0\)