a) \(A=\dfrac{1}{\sqrt{x}+1}+\dfrac{x}{\sqrt{x}-x}\)
\(=\dfrac{\sqrt{x}-x+x\sqrt{x}+x}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-x\right)}\)
\(=\dfrac{\sqrt{x}\left(1+x\right)}{\sqrt{x}\left(1-x\right)}\)
\(=\dfrac{1+x}{1-x}\)
b) \(A=2017\)
\(\Rightarrow\dfrac{1+x}{1-x}=2017\)
\(\Rightarrow1+x=2017\left(1-x\right)\)
\(\Rightarrow1+x=2017-2017x\)
\(\Rightarrow2018x=2016\)
\(\Rightarrow x=\dfrac{1008}{1009}\)