Ta có: \(A=\dfrac{4}{n-3}\left(n\in Z\right)\)
a) Để \(A\) là phân số thì \(n-3\ne0\Leftrightarrow n\ne3\)
b) Để \(A\in Z\Rightarrow\left(n-3\right)\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
\(\Rightarrow n\in\left\{4;3;5;1;7;-1\right\}\)
Vậy \(n\in\left\{4;3;5;1;7;-1\right\}\) thì \(A\in Z\)
a: Để A là phân số thì n-3<>0
hay n<>3
b: Để A là số nguyên thì \(n-3\inƯ\left(4\right)\)
\(\Leftrightarrow n-3\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{4;2;5;1;7;-1\right\}\)