Gọi ba số cần tìm là \(a;b;c\)
Vì \(a;b;c\) tỉ lệ nghịch với \(4;6;15\) nên ta có:
\(a.4=b.6=c.15\)
\(\Rightarrow\dfrac{a.4}{60}=\dfrac{b.6}{60}=\dfrac{c.15}{60}\)
\(\Rightarrow\dfrac{a}{15}=\dfrac{b}{10}=\dfrac{c}{4}\)
Đặt \(\dfrac{a}{15}=\dfrac{b}{10}=\dfrac{c}{4}=k\)
\(\Rightarrow\left\{{}\begin{matrix}a=15k=3.5k\\b=10k=2.5k\\c=4k=2.2k\end{matrix}\right.\)
\(\RightarrowƯCLN\left(a;b;c\right)=ƯCLN\left(15k;10k;4k\right)=k\)
Mà \(ƯCLN\left(a;b;c\right)=12\Rightarrow k=12\)
\(\Rightarrow\left\{{}\begin{matrix}a=15.12=180\\b=10.12=120\\c=4.12=48\end{matrix}\right.\)
Vậy số bé nhất trong ba số đó là \(48\)