Cho a,b,c là các số dương thỏa mãn a+b+c=3. Tìm Max của biểu thức
\(P=\dfrac{a}{a^3+b^2+c}+\dfrac{b}{b^3+c^2+a}+\dfrac{c}{c^3+a^2+b}\)
Cho 3 số thực a,b,c thỏa mãn
\(\frac{a}{2015}=\frac{b}{2016}=\frac{c}{2017}\)
Chứng minh rằng : 4(a-b)(b-c) = (c-a)2
Cho a, b, c dương thỏa mãn \(a^2+b^2+c^2=3\). Chứng minh rằng:
P \(=\dfrac{a^3}{\sqrt{b^2+3}}+\dfrac{b^3}{\sqrt{c^2+3}}+\dfrac{c^3}{\sqrt{a^2+3}}\ge\dfrac{3}{2}\)
Cho a, b, c là các số thực dương thỏa mãn \(4\left(a^3+b^3\right)+c^3=2\left(a+b+c\right)\left(ac+bc-2\right)\)
Tìm giá trị lớn nhất của \(P=\frac{2a^2}{3a^2+b^2+2ac\left(c+2\right)}+\frac{b+c}{a+b+c+2}-\frac{\left(a+b\right)^2+c^2}{16}\)
Cho ba số thực dương thỏa mãn abc=1. CMR
\(\dfrac{1}{a^2+a+1}+\dfrac{1}{b^2+b+1}+\dfrac{1}{c^2+c+1}\ge1\)
Cho tam giác ABC có độ dài các cạnh BC=a, AC=b, AB=c thỏa mãn \(a^4+b^4+c^4=2a^2b^2+2a^2c^2\). Tìm số đo góc \(\widehat{BAC}\)
Câu 1: Cho a,b là 2 số nguyên dương. Chứng minh: (a+b)(1/a+1/b)> hoặc= 4.
Câu 2: Chứng minh rằng
a/ a2+2b2+c2-2ab-2bc> hoặc =0, với mọi a,b,c.
b/ a2+b2-4a-6b+13> hoặc =0, với mọi a,b.
Dấu''='' xảy ra khi nào?
Giúp mình với ạ :<
Chứng minh tam giác ABC thỏa mãn \(\left\{{}\begin{matrix}a^2=b^2+c^2-bc\\b^2=a^2+c^2-ac\end{matrix}\right.\)
thì là tam giác đều
cho a,b,c>0 thỏa mãn a+b+c=1
Cmr: \(\frac{1}{a+b^2}+\frac{1}{b+c^2}+\frac{1}{c+a^2}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)