\(1.CMR:\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)
\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)=1+\frac{b}{a}+\frac{a}{b}+1=\frac{a}{b}+\frac{b}{a}+2\)
Áp dụng BĐT AM-GM ta có:
\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\)
\(\Rightarrow\frac{a}{b}+\frac{b}{a}+2\ge2+2=4\)
Dấu '' = '' xảy ra khi \(a=b\)
\(2.\\ a.CMR:a^2+2b^2+c^2-2ab-2bc\ge0\forall a,b,c\)
\(a^2+2b^2+c^2-2ab-2bc=a^2-2ab+b^2+c^2-2bc+b^2=\left(a-b\right)^2+\left(b-c\right)^2\ge0\forall a,b,c\)
Dấu '' = '' xảy ra khi \(a=b=c\)
\(b.CMR:a^2+b^2-4a+6b+13\ge0\forall a,b\)
\(a^2+b^2-4a+6b+13=\left(a^2-4a+4\right)+\left(b^2+6b+9\right)=\left(a-2\right)^2+\left(b+9\right)^2\ge0\forall a,b\)
Dấu '' = '' xảy ra khi \(\left\{{}\begin{matrix}a=2\\b=-9\end{matrix}\right.\)