\(\dfrac{a+b-x}{c}+\dfrac{b+c-x}{a}+\dfrac{c+a-x}{b}+\dfrac{4x}{a+b+c}=1\)
\(\Leftrightarrow\dfrac{a+b-x}{c}+\dfrac{b+c-x}{a}+\dfrac{c+a-x}{b}+\dfrac{4x}{a+b+c}-1=0\)
\(\Leftrightarrow(\dfrac{a+b-x}{c}+1)+(\dfrac{b+c-x}{a}+1)+(\dfrac{c+a-x}{b}+1)+(\dfrac{4x}{a+b+c}-4)=0\)\(\Leftrightarrow\dfrac{a+b+c-x}{c}+\dfrac{a+b+c-x}{a}+\dfrac{a+b+c-x}{b}+\dfrac{-4\left(a+b+c-x\right)}{a+b+c}=0\)\(\Leftrightarrow\left(a+b+c-x\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}-\dfrac{4}{a+b+c}\right)=0\)
Hiển nhiên: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}-\dfrac{4}{a+b+c}>0\left(a,b,c>0\right)\)
\(\Rightarrow x=a+b+c\)