Cho điểm A cố định ở bên ngoài đường trong tâm O, kẻ các tiếp tuyến AM, AN vs đường tròn (M, N là các tiếp điểm). Vẽ cát tuyến ABC vs đường tròn (O) (B nằm giữa A và C). Gọi I là trung điểm của BC. a. CM tứ giác AMON nội tiếp đường tròn b.Gọi k là giao điểm của MN và BC. CM AK.AI=AB.AC
Cho đường tròn (O;R) và dây BC cố định. Trên tia đối của tia BC lấy điểm A. Kẻ các tiếp tuyến AM, AN với đường tròn (O) (M và N là các tiếp điểm, N thuộc cung BC nhỏ). Gọi H là trung điểm của dây BC.
1) Chứng minh tứ giác AMON và tứ giác AOHN nội tiếp.
2) MN cắt AO tại điểm I. Chứng minh rằng AI. AO= AM2
Bài 5. Cho đường tròn (O;R) và điểm A cố định ngoài đường tròn. Qua A kẻ hai tiếp
tuyến AM, AN tới đường tròn (M, N là hai tiếp điểm). Một đường thẳng d đi qua A
cắt đường tròn (O;R) tại B và C (AB < AC). Gọi I là trung điểm của BC
a) Chứng minh năm điểm A,M, N, O,I cùng thuộc một đường tròn
b) Chứng minh AM^2 = AB.AC
c) Đường thẳng qua B, song song với AM cắt MN tại E. Chứng minh: IE // MC
d) Chứng minh: Khi d thay đổi quay quanh điểm A thì trọng tâm G của tam giác
MBC luôn nằm trên một đường tròn cố định.
Cho đường tròn tâm O. Từ điểm A nằm ngoài đường tròn kẻ hai tiếp tuyến AB,AC. Gọi M là một điểm thuộc cung nhỏ BC. Tiếp tuyến tại M cắt AB,AC lần lượt ở D và E.Gọi I và K lần lượt là giao điểm của OD và OE với BC. Chứng minh tứ giác OBDK nội tiếp
Từ điểm K nằm ngoài đường tròn (O;R), vẽ tiếp tuyến KA và KB với đường tròn (với A, B là tiếp điểm ).
a, Chứng minh tứ giác KAOB là tứ giác nội tiếp
b, Gọi M là trung điểm của AK. Đoạn thẳng BM cắt (O) tại điểm thứ hai là N. Đường thẳng KN cắt (O) tại điểm thứ hai là D . Chứng minh AK \(//\)BD
Cho đường tròn ( O ) cố định, A là 1 điểm nằm ngoài đường trờn, qua A kẻ 2 tiếp tuyến AM, AN. Đường thẳng qua A cắt đường tròn ( O) tại B, C ( AB < AC ). I là trung điểm của BC.
a, CMR : tứ giác AMON nội tiếp
b, Gọi K là giao điểm của MN và BC. CMR : AK. AI = AB.AC
c, Khi các tuyến ABC thay đổi thì I chuyển động trên cung tròn nào ? Vì sao ?
d, Xác định vị trí của các tuyến ABC để IM = 2IN
Cho nửa đường tròn (O; R) ,dây AB = R √3 cố định không đi qua tâm. Gọi C là điểm thuộc cung lớn AB và AC. Gọi I là giao điểm của BN và CM. Dây MN cắt dây AB và AC lần lượt tại H và K. Tính số đo góc ACB và chứng minh tứ giác BMHI nội tiếp đường tròn.