Ta có
\(B=3+3^2+3^3+....+3^{2015}\)
\(3B=3^2+3^3+....+3^{2016}\)
\(\Rightarrow3B-B=\left(3^2+3^3+....+3^{2016}\right)-\left(3+3^2+....+3^{2015}\right)\)
\(\Rightarrow2B=3^{2016}-3\)
\(\Rightarrow2B+3=3^{2016}\)
Ta có:
\(B=3+3^2+...+3^{2015}\)
\(\Rightarrow3B=3^2+3^3+3^4+...+3^{2016}\)
\(\Rightarrow3B-B=\left(3^2+3^3+...+3^{2016}\right)-\left(3+3^2+...+3^{2016}\right)\)
\(\Rightarrow2B=3^{2016}-3\)
Thay 2B vào \(2B+3=3^n\) ta có:
\(3^{2016}-3+3=3^n\)
\(\Rightarrow3^{2016}=3^n\)
\(\Rightarrow n=2016\)
Vậy n = 2016