Chứng minh:
\(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{18.19.20}< \dfrac{1}{4}\)
\(B=\dfrac{36}{1.3.5}+\dfrac{36}{5.7.9}+\dfrac{36}{9.11.13}+...+\dfrac{36}{25.27.29}< 3\)
\(C=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}\in< 1\left(n\in N,n\ge2\right)\)
\(D=\dfrac{1}{4^2}+\dfrac{1}{6^2}+\dfrac{1}{8^2}+...+\dfrac{1}{\left(2n\right)^2}< 4\left(n\in N,n\ge2\right)\)
\(E=\dfrac{2!}{3!}+\dfrac{2!}{4!}+\dfrac{2!}{5!}+...+\dfrac{2!}{n!}< 1\left(n\in N,n\ge3\right)\)
Cho B = \(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{x}\left(1+2+3+...+x\right)\)
Tìm số nguyên dương để B = 115
Cho \(B=1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{x}\left(1+2+3+...+x\right)\)
Tìm số nguyên dương x biết B = 115
1 (5 điểm)
a) Tính giá trị biểu thức: \(L=\left(-\dfrac{3}{4}+\dfrac{4}{11}\right):\dfrac{7}{11}+\left(-\dfrac{4}{7}+\dfrac{7}{11}\right):\dfrac{7}{11}\)
b) Tính giá trị nhỏ nhất của biểu thức: \(L=\left[\left(x+1\right)^2+3\right]^2+\left|y-5\right|+2008\)
2(4 điểm)
a) Tìm 3 số x;y;z thỏa mãn \(20x=15y=12z\) và \(2x^2+2y^2-3z^2=-100\)
b) Cho đa thức \(L_1\left(x\right)=x^2+2xm+m^2\) và \(L_2\left(x\right)=x^2+\left(2x+1\right)x+m^2\)
Tìm m biết \(L_1\left(1\right)=L_2\left(-1\right)\)
3(4 điểm)
a) Chứng minh \(5^{n+3}-3^{n+3}+5^{n+2}-3^{n+1}⋮60\) với mọi n thuộc N
b) Chứng minh \(\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+\dfrac{4}{4^4}+...+\dfrac{2017}{4^{2017}}< \dfrac{1}{2}\)
6 điểm được free ạ =)))))
1.Tìm tất cả các giá trị a sao cho A nguyên ( \(a\in Z\))
\(A=\dfrac{3n-7}{n-1}\)
2.Tìm tất cả các giá trị b sao cho B nguyên\(\left(b\in Z\right)\)
\(B=\dfrac{4n+1}{2n-3}\)
3. Cho \(Q=\left(\dfrac{1}{2^2}-1\right).\left(\dfrac{1}{3^2}-1\right).\left(\dfrac{1}{4^2}-1\right)...\left(\dfrac{1}{100^2}-1\right)\).Chứng minh rằng, \(Q< -\dfrac{1}{2}\)
4.Tìm \(x\), biết \(x\in N^{\circledast}\)
\(\dfrac{37-x}{x+13}=\dfrac{3}{7}\)
Bài 1. a, Cho A = \(\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right).....\left(\dfrac{1}{10}-1\right)\)
So sánh A với \(\dfrac{-1}{9}\)
Bài 2. Cho A = \(\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)....\left(\dfrac{1}{2008}-1\right)\left(\dfrac{1}{2009}-1\right)\)
B = \(\left(-1\dfrac{1}{2}\right)\left(-1\dfrac{1}{3}\right)....\left(-1\dfrac{1}{2007}\right)\left(-1\dfrac{1}{2008}\right)\)
Tính A . B ?
Câu 1: tìm x biết \(\left[\dfrac{1}{\left(2.5\right)}+\dfrac{1}{\left(5.8\right)}+\dfrac{1}{\left(8.11\right)}+.....+\dfrac{1}{\left(65.68\right)}\right].x-\dfrac{7}{34}=\dfrac{19}{68}\)
Câu 2: tìm số tự nhiên n biết 2n +2n-2 = 5/2
Câu 3: nếu\(0< a< b< c< d< e< f\)
và \(\left(a-b\right)\left(c-d\right)\left(e-f\right)x=\left(b-a\right)\left(d-c\right)\left(f-e\right)\)thì x=..........
Câu 4: cho 3 số x;y;z khác 0 thỏa mãn điều kiện \(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y-z}{z}\)
khi đó \(B=\left(1+\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{z}{x}\right)\)có giá trị bằng ...............
Câu 5: số giá trị của x thỏa mãn \(|x+1|+|x-1012|+|x+3|+|x+1013|=2013\)
Câu 6: biết tổng các chữ số của 1 số k đổi khi chia số đó cho 5. số dư của số đó khi chia cho 9 là...........
Câu 7: độ dài cạnh góc vuông của 1 tam giác vuông can ABC tại A có đường phân giác kẻ từ đỉnh A bằng \(\dfrac{3\sqrt{2}}{2}cm\)là .........cm
Câu 8: rút gọn \(A=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+....+\dfrac{1}{2013}}{2012+\dfrac{2012}{2}+\dfrac{2011}{3}+...+\dfrac{1}{2013}}\)ta đc A=............
Câu 9: cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a};a+b+c\ne0\)và \(a=2014\) khi đó \(a-\dfrac{2}{19}b+\dfrac{5}{53}c=.......\)
Câu 10: tìm x;y;z biết\(\dfrac{x}{z+y+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=x+y+z\) trả lời x=....; y=....; z=....
tìm số tự nhiên thỏa mãn điều kiện
\(2\cdot2^2+3\cdot2^3+4\cdot2^4+........+n\cdot2^n=2^{n+11}\)
rút gọn : \(A=\left(\dfrac{2}{5}-\dfrac{5}{2}+\dfrac{1}{10}\right):\left(\dfrac{5}{2}-\dfrac{2}{3}+\dfrac{1}{12}\right)\)
tính:\(B=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+......+\dfrac{1}{2017}}{\dfrac{2016}{1}+\dfrac{2003}{2}+\dfrac{2002}{3}+.......+\dfrac{1}{2016}}\)
CMR :\(5a+2b⋮13\Leftrightarrow9a+b⋮13\left(a,b\in Z\right)\)