Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
2 ghetchiquyen2

Cho

\(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2016}+\frac{1}{2017}\)

\(B=\frac{2016}{1}+\frac{2015}{2}+...+\frac{2}{2015}+\frac{1}{2016}\)

Tính \(\frac{B}{A}\) ?

Chiyuki Fujito
25 tháng 1 2020 lúc 19:07

Ta có \(B=\frac{2016}{1}+\frac{2015}{2}+...+\frac{2}{2015}+\frac{1}{2016}\)

\(\Rightarrow B=1+\left(\frac{2015}{2}+1\right)+\left(\frac{2014}{3}+1\right)+...+\left(\frac{2}{2015}+1\right)+\left(\frac{1}{2016}+1\right)\)

\(\Rightarrow B=\frac{2017}{2017}+\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2015}+\frac{2017}{2016}\)

\(\Rightarrow B=2017.\left(\frac{1}{2017}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}+\frac{1}{2016}\right)\)

\(\Rightarrow B=2017.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}\right)\)

\(\Rightarrow\frac{B}{A}=\frac{2017.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}=2017\)

Vậy \(\frac{B}{A}\)= 2017

~ Chúc bạn học tốt

Khách vãng lai đã xóa

Các câu hỏi tương tự
Vũ Trung Hiếu
Xem chi tiết
Đặng Quốc Huy
Xem chi tiết
Đặng Quốc Huy
Xem chi tiết
Đặng Quốc Huy
Xem chi tiết
chuducluong
Xem chi tiết
Suki Vũ
Xem chi tiết
Trần Ngọc Hà
Xem chi tiết
No choice teen 2
Xem chi tiết
Suki Vũ
Xem chi tiết