sửa đề x>0 .....
ta có \(\dfrac{1}{A}=\dfrac{\left(x+2004\right)^2}{x}\)
= \(\dfrac{x^2+2.2004.x+2004^2}{x}\)
= \(\dfrac{4.2004x+\left(x-2004\right)^2}{x}\)
= \(\dfrac{4.2004x}{x}+\dfrac{\left(x-2004\right)^2}{x}\)
= \(4.2004+\dfrac{\left(x-2004\right)^2}{x}\)
vì (x-2004)2 ≥ 0 ∀x
x> 0
=> \(\dfrac{\left(x-2004\right)^2}{x}\ge0\)
=> \(4.2004+\dfrac{\left(x-2004\right)^2}{x}\ge2004.4\)
=> \(\dfrac{1}{A}\ge8016\)
=> \(A\le\dfrac{1}{8016}\)
max A = \(\dfrac{1}{8016}\) dấu "=" xảy ra khi x-2004=0
x=2004
vậy maxA=\(\dfrac{1}{8016}\) khi x=2004