1: Khi x=0 thì \(A=\dfrac{0+6}{0+1}=\dfrac{6}{1}=6\)
Khi x=2 thì \(A=\dfrac{2+6}{2+1}=\dfrac{8}{3}\)
Khi x=-2 thì \(A=\dfrac{-2+6}{-2+1}=\dfrac{4}{-1}=-4\)
2: Để A là số nguyên thì \(x+6⋮x+1\)
\(\Leftrightarrow x+1+5⋮x+1\)
\(\Leftrightarrow x+1\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{0;-2;4;-6\right\}\)
5: Để A>0 thì \(\dfrac{x+6}{x+1}>0\)
=>x>-1 hoặc x<-6
6: Để A<0 thì \(\dfrac{x+6}{x+1}< 0\)
=>-6<x<-1