\(\left|a-b\right|=\left|\dfrac{5n-1}{4}-\dfrac{3n+12}{12}\right|=\left|n-\dfrac{5}{4}\right|\).
Nếu \(a,b\) là hai số tự nhiên liên tiếp thì \(\left|a-b\right|=1\) nghĩa là:
\(\left|n-\dfrac{5}{4}\right|=1\Leftrightarrow\left[{}\begin{matrix}n-\dfrac{5}{4}=-1\\n-\dfrac{5}{4}=1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}n=\dfrac{1}{4}\\n=\dfrac{9}{4}\end{matrix}\right.\) (mâu thuẫn do \(n\in N\)).
Vậy \(a,b\) không đồng thời là hai số tự nhiên liên tiếp với \(n\in N\).