1 cho \(\dfrac{1}{c}=\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)(với a,b,c\(\ne\)0;b\(\ne\)c CMR\(\dfrac{a}{b}=\dfrac{a-c}{c-b}\)
2 cho số tự nhiên n,chứng tỏ A=\(9^{n+2}+3^{n+2}-9^n+3^n\) chia hết cho 10
Cho các số dương a;b;c;d thỏa mãn:
\(a^2+c^2=1\); \(\dfrac{a^4}{b}+\dfrac{c^4}{d}=\dfrac{1}{b+d}\).
CMR \(\dfrac{a^{2006}}{b^{1003}}+\dfrac{c^{2006}}{d^{1003}}=\dfrac{2}{\left(b+d\right)^{1003}}\).
1. Tìm các số a, b, c biết rằng:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\) và a + 2b - 3c = -20
2. Tìm các số a, b, c biết rằng:
\(\dfrac{a}{2}=\dfrac{b}{3};\dfrac{b}{5}=\dfrac{c}{4}\) và a - b + c = -49
3. Tìm các số a, b, c biết rằng:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\) và \(a^2-b^2+2c^2=108\)
4. Có 16 tờ giấy bạc loại 2000đ; 5000đ và 10000đ. Trị giá mỗi loại tiền trên đều bằng nhau. Hỏi mỗi loại có mấy tờ?
5. CMR: Nếu a2 = bc ( với a # b và a # c ) thì \(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)
a, cho a,b,c \(\in\) R và a,b,c \(\ne\) 0 thỏa mãn \(b^2=ac\) . CMR : \(\dfrac{a}{c}=\dfrac{\left(a+2013b\right)^2}{\left(b+2013c\right)^2}\)
b, cho cá số a,b,c khác 0 thỏa mãn \(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}\)
Tính M=\(\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)
a, số A đc chia thành 3 số tỉ lệ theo \(\dfrac{2}{5};\dfrac{3}{4};\dfrac{1}{6}\) . Bt tổng cÁC bình phương của chúng = 24309. Tìm A
b, cho \(\dfrac{a}{c}=\dfrac{c}{b}\) . CMR : \(\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{a}{b}\)
Cho : \(\dfrac{a}{c}=\dfrac{c}{b}.CMR:\\ a,\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{a}{b}\\ b,\dfrac{b^2-a^2}{a^2+c^2}=\dfrac{b-a}{a}\)
Bài 1:Tìm 3 số a,b,c biết
\(\dfrac{3a-2b}{5}=\dfrac{2c-5a}{3}=\dfrac{5b-3c}{2}\) và a+b+c= -50
Bài 2: Chứng minh rằng:Nếu các số a,b,c,d thỏa mãn:
[ab(ab-2cd)+c2.d2].[ab(ab-2)+2(ab+1)] =0
Thì a,b,c,d lập thành một tỉ lệ thức
Bài 3:Cho b2= a.c; c2=b.d (c,b,d\(\ne0\) và b+c\(\ne0\) ; b3+d3\(\ne d^3\) )
CMR \(\dfrac{a^3+b^3-c^3}{b^3+c^3-d^3}=\left(\dfrac{a+b-c}{b+c-d}\right)^3\)
Bài 4: Cho b2 = a.c (a,c\(\ne0\) )
CMR \(\dfrac{a}{c}=\left(\dfrac{2016a-2017b}{2016b-2017c}\right)^2\)
a,Cho a,b,c là các số thực thỏa mãn \(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}\) và a-2b+3c=14. CMR : \(32a+10b^2-c^3=3\)
b, Tìm x, y biết : \(\sqrt{x^2+1}+\sqrt{3x^2+4}=3-\left(x+2y-1\right)^2\)
*) a,Cho các số a,b,c,d khác 0. Tính
T=\(x^{2011}+y^{2011}+z^{2011}+t^{2011}\)
Biết x,y,z,t thỏa mãn: \(\dfrac{x^{2010}+y^{2010}+z^{2010}+t^{2010}}{a^2+b^2+c^2+d^2}\)=\(\dfrac{x^{2010}}{a^2}+\dfrac{y^{2010}}{b^2}+\dfrac{z^{2010}}{c^2}+\dfrac{t^{2010}}{d^2}\)
b,Tìm sốtự nhiên M nhỏ nhất có 4 chữ số sao cho:
M = a+b=c+d=e+f
Biết a,b,c,d,e,f \(\in\) N* và \(\dfrac{a}{b}=\dfrac{14}{22};\dfrac{c}{d}=\dfrac{11}{13};\dfrac{e}{f}=\dfrac{17}{13}\)
c, Cho 3 số a,b,c thỏa mãn:\(\dfrac{a}{2009}=\dfrac{b}{2010}=\dfrac{c}{2011}\)
Tính giá trị của biểu thức M = 4(a - b)(b - c) - (c - a)\(^2\)