Cho a,b > 0 và \(a^2+b^2\le2\) . Tìm max \(A=a\sqrt{3b\left(a+2b\right)}+b\sqrt{3a\left(b+2a\right)}\)
Rút gọn:
\(A=\left[\dfrac{\left(1-a\right)^2}{3a+\left(a-1\right)^2}+\dfrac{2a^2-4a-1}{a^3-1}-\dfrac{1}{1-a}\right]:\dfrac{2a}{a^3+a}\)
Rút gọn:
\(C=\left[\left(\dfrac{1}{a^2+1}\right)\cdot\dfrac{1}{a^2+2a+1}+\dfrac{2}{\left(a+1\right)^3}\cdot\left(\dfrac{1}{a}+1\right)\right]:\dfrac{a-1}{a^3}\)
Cho a, b, c > 0 . CMR:
\(\frac{1}{a+b+c}\ge\frac{a^3}{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}+\frac{b^3}{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}+\frac{c^3}{\left(2c^2+a^2\right)\left(2c^2+a^2\right)}\)
Cho a + b + c = 0. CMR \(a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)=2\left(ab+bc+ca\right)^2=\dfrac{\left(a^2+b^2+c^2\right)^2}{2}\)
a) \(Q=\left|x-\dfrac{1}{2}\right|+\dfrac{3}{4}-x\)
Tìm Max ( Min nếu có ) của Q
b) Tìm Min \(K=a^4-2a^3+3a^2-4a+5\)
Cho \(A=\dfrac{x\left(1-x^2\right)^2}{1+x^2}:\left[\left(\dfrac{1-x^3}{1-x}+x\right)\left(\dfrac{1+x^3}{1+x}-x\right)\right]\).
a) Rút gọn A.
b) Tìm A khi \(x=-\dfrac{1}{2}\)
c) Tìm x để 2A = 1.
Rút gọn rồi tìm a để \(\sqrt{a}>A\)
\(A=\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}-\dfrac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right)\cdot\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\)
1.Cmr:\(2a^4+1\ge2a^3+a^2\) với mọi a
2.Cho \(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{9.11}\)
\(B=\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)...\left(1+\dfrac{1}{8.10}\right)\left(1+\dfrac{1}{9.11}\right)\)
Tìm số nguyên x thỏa mãn \(2A< \dfrac{2x}{11}< B\)
Các bạn làm giúp mình với nha chứ sắp thi rồi :)