Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
An Võ (leo)

Cho a.c > 0 và \(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\) CMR: \(\frac{a+b}{2a-b}+\frac{c+b}{2c-b}\ge4\)

P/s: có thể sd các cách cm L9

Khôi Bùi
7 tháng 3 2019 lúc 20:03

Ta có : \(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\Leftrightarrow\frac{a+c}{ac}=\frac{2}{b}\Leftrightarrow b=\frac{2ac}{a+c}\)

\(\frac{a+b}{2a-b}=\frac{a+\frac{2ac}{a+c}}{2a-\frac{2ac}{a+c}}=\frac{\frac{a^2+3ac}{a+c}}{\frac{2a^2}{a+c}}=\frac{a^2+3ac}{2a^2}=\frac{a+3c}{2a}\left(1\right)\)

\(\frac{c+b}{2c-b}=\frac{c+\frac{2ac}{a+c}}{2c-\frac{2ac}{a+c}}=\frac{\frac{c^2+3ac}{a+c}}{\frac{2c^2}{a+c}}=\frac{c^2+3ac}{2c^2}=\frac{c+3a}{2c}\left(2\right)\)

Từ ( 1 ) ; ( 2 ) có : \(\frac{a+b}{2a-b}+\frac{c+b}{2c-b}=\frac{a+3c}{2a}+\frac{c+3a}{2c}=\frac{ac+3c^2+ac+3a^2}{2ac}=\frac{3\left(c^2+a^2\right)+2ac}{2ac}\)

Áp dụng BĐT Cauchy cho a ; c dương , ta có :

\(c^2+a^2\ge2ac\Rightarrow\frac{3\left(c^2+a^2\right)+2ac}{2ac}\ge\frac{3.2ac+2ac}{2ac}=4\)

Dấu " = " xảy ra \(\Leftrightarrow a=c\)

\(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\) \(\Rightarrow\frac{2}{a}=\frac{2}{b}\Rightarrow a=b=c\)

Vậy ...


Các câu hỏi tương tự
long đỗ
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
Xem chi tiết
Y
Xem chi tiết
Trần Anh Thơ
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
Xem chi tiết
Trần Anh Thơ
Xem chi tiết
Hạ Vy
Xem chi tiết
Nguyễn Bùi Đại Hiệp
Xem chi tiết