Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
long đỗ

Cho a > 0; c > 0 và \(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\) Chứng minh: \(\frac{a+b}{2a-b}+\frac{c+b}{2c-b}\ge4\)

Vũ Huy Hoàng
7 tháng 6 2019 lúc 8:51

\(\frac{a+c}{ac}=\frac{2}{b}\) => \(b=\frac{2ac}{a+c}\) thay vào BĐT cần chứng minh, ta được:

\(\frac{a+\frac{2ac}{a+c}}{2a-\frac{2ac}{a+c}}+\frac{c+\frac{2ac}{a+c}}{2c-\frac{2ac}{a+c}}=\frac{a^2+3ac}{2a^2}+\frac{c^2+3ac}{2c^2}\)

\(=\frac{2a^2c^2+3a^3c+3ac^3}{2a^2c^2}\ge4\)

<=> 3a3c-6a2c2+3ac3 ≥ 0

<=> 3ac(a-c)2 ≥ 0 luôn đúng ∀ a,c > 0

Vậy BĐT được chứng minh, đẳng thức xảy ra khi và chỉ khi a=c; b≠0


Các câu hỏi tương tự
An Võ (leo)
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
Xem chi tiết
Y
Xem chi tiết
Trần Anh Thơ
Xem chi tiết
Trần Anh Thơ
Xem chi tiết
Trần Anh Thơ
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
Xem chi tiết