Cho 3 số a, b, c khác 0 và : a(y + z) = b(x + z) =c(z + y) Chứng minh rằng : y - z /a(b - c) = z - x / b(c - a) = x - y / c(a - b)
Cho x,y,z,a,b,c khác 0 và \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\).Chứng minh rằng
a) \(\dfrac{a^2}{x}=\dfrac{b^2}{y}=\dfrac{c^2}{z}=\dfrac{\left(a+b+c\right)^2}{x+y+z}\)
b) \(\dfrac{x^2+y^2+z^2}{\left(ax+by+cz\right)}=\dfrac{1}{a^2+b^2+c^2}\)
a) Cho các số a,b,c,d khác 0 . Tính :
T = \(x^{2011}+y^{2011}+z^{2011}+t^{2011}\)
Biết x,y,z,t thoả mãn \(\dfrac{x^{2010}+y^{2010}+z^{2010}+t^{2010}}{a^2+b^2+c^2+d^2}=\dfrac{x^{2010}}{a^2}+\dfrac{y^{2010}}{b^2}+\dfrac{z^{2010}}{c^2}+\dfrac{t^{2010}}{d^2}\)
b) Tìm số tự nhiên M nhỏ nhất có 4 chữ số thoả mãn điều kiện
M=a+b=c+d=e+f
Nếu câu b thiếu j thì các bạn cứ bỏ qua nha
1 , Cho a + b + c = 2014 và ( 1 / a + b ) + ( 1 / b+ c ) + ( 1 / c + a ) = 1 / 9 . Tính S = ( a / b + c ) + ( b / c + a ) + ( c / a + b )
2 , Cho z , y , z là các số khác 0 và x^2 = yz , y^2 = xz , z^2 = xy . Chứng minh rằng x = y = z
Cho x,y,z,a,b,c khác 0 và \(\dfrac{x^2-yz}{a}=\dfrac{y^2-xz}{b}=\dfrac{z^2-xy}{c}\).Chứng minh rằng \(\dfrac{a^2-bc}{x}=\dfrac{b^2-ac}{y}=\dfrac{c^2-ab}{z}\)
Cho các số hữu tỉ \(x=\dfrac{a}{b};y=\dfrac{c}{d};z=\dfrac{a+c}{b+d}\left(a,b,c,d\in Z;b>0;d>0\right)\)
Chứng minh rằng nếu x < y thì x < y < z .
Cho \(a+b+c=a^2+b^2+c^2=1\) và \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\). Chứng minh rằng \(\left(x+y+z\right)^2=x^2+y^2+z^2\)
Cho a;b;c;x;y;z thoả mãn điều kiện: a+b+c=0 ; x+y+z=0; x/a + y/b +z/c=0
Tính giá trị: P= (a^2)x + (b^2)y + (c^2)z
Câu 1: Cho x, y, z là các số ≠ 0 và x+\(\dfrac{1}{y}\) =y+\(\dfrac{1}{z}\) =z+\(\dfrac{1}{x}\) . Chứng minh rằng
Hoặc x=y=z, hoặc x2y2z2=1.
Câu 2: Cho abc ≠ 0 và a+b+c ≠ 0. Tìm x, biết: \(\dfrac{a+b-x}{c}\) +\(\dfrac{a+c-x}{b}\) +\(\dfrac{b+c-x}{a}\) +\(\dfrac{4x}{a+b+c}\) =1