bài 1 tính
\(A=\frac{a+b}{b+c}\) biết \(\frac{b}{a}=2;\frac{c}{b}=3\)
bài 2 tìm x
a) \(\frac{72-x}{7}=\frac{x-40}{9}\)
b) \(\frac{x+4}{20}=\frac{5}{x+4}\)
bài 3 tìm x,y
\(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
bài 8 tìm x,y,z
a) x:y:z=3:4:5 và 2x2+2y2-3z2=-100
b)\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z\)
c) \(\left|x-3\right|+\left|y+5\right|+\left|x+y+z\right|=0\)
d) \(\left|2x-5\right|+\left|2y-z\right|+\left|4z-2\right|=0\)
Cho x,y,z,a,b,c khác 0 và \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\).Chứng minh rằng
a) \(\dfrac{a^2}{x}=\dfrac{b^2}{y}=\dfrac{c^2}{z}=\dfrac{\left(a+b+c\right)^2}{x+y+z}\)
b) \(\dfrac{x^2+y^2+z^2}{\left(ax+by+cz\right)}=\dfrac{1}{a^2+b^2+c^2}\)
Bài 1: Cho \(\frac{x+y-3}{z}=\frac{x+z+2}{y}=\frac{y+z+1}{x}=\frac{1}{x+y+z}\). Tìm x;y;z.
Bài 2: Cho \(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\). Tìm x.
Bài 3: Cho \(\frac{a+b}{b+c}=\frac{c+d}{d+a}\). Chứng minh rằng \(\left[{}\begin{matrix}a=c\\a+b+c+d=0\end{matrix}\right.\).
Bài 4: Tìm \(a_1;a_2;a_3;...;a_{100}\)biết:
\(\frac{a_1-1}{100}=\frac{a_2-2}{99}=\frac{a_3-3}{98}=...=\frac{a_{100}-100}{1}\)và \(a_1+a_2+a_3+...+a_{100}=10100\).
Bài 5: Tìm x biết:
a) \(\left[\frac{3x+1}{5}\right]=1\)
b) \(\left[\frac{7x-5}{3}\right]=-2\)
Bài 6: Tìm \(\left[x\right]\) biết:
a) \(3< x< \frac{17}{5}\)
b) \(\frac{-9}{2}< x< -4\)
c) \(\frac{-11}{3}< x< \frac{10}{-3}\)
Tìm các số x,y,z khác 0 biết: \(\frac{xy}{ay+bx}=\frac{yz}{cy+bz}=\frac{xz}{az+cx}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\left(a,b,c\ne0\right)\)
Tìm các số x,y,z khác 0 biết: \(\frac{xy}{ay+bx}=\frac{yz}{cy+bz}=\frac{xz}{az+cx}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\left(a,b,c\ne0\right)\)
Bài 1: Tìm các số x,y,z biết rằng:
a) \(\frac{1}{2}x=\frac{2}{3}y=\frac{3}{1}z\) và x-y=15
b) \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
Chứng minh nếu: \(a.\left(y+z\right)=b.\left(z+x\right)=c.\left(x+y\right)\). Trong đó a,b,c,d khác nhau và khác 0 thì ta có: \(\frac{y-z}{a.\left(b-c\right)}=\frac{z-x}{b.\left(c-a\right)}=\frac{x-y}{c.\left(a-b\right)}\)
Làm được bài nào thì làm hộ mình vớii
Bài 1
a. Tính: \(A=\frac{3,375-3,3+\frac{3}{11}+\frac{3}{12}}{-0,625+0,5\cdot\frac{5}{11}-\frac{5}{12}}:\frac{5\left(3\cdot7^{15}-19\cdot7^{14}\right)}{49^8+3\cdot7^{15}}+1,2\left(1\right)\)
b. Tìm các số x, y biết: \(\left|y+2020\right|+30=\frac{2010}{\left(2x-6\right)^2+67}\)
c. Chứng minh rằng: \(\frac{1}{5^3}+\frac{1}{6^3}+\frac{1}{7^3}+...+\frac{1}{2020^3}< \frac{1}{40}\)
Bài 2
a. Tìm x, y, z biết: \(\left(3x-2y\right)^4+\left(3x-4z\right)^2+\left|xy+xz-zy-240\right|=0\)
b. Tìm x, y, z biết: \(\frac{x^3}{125}=\frac{y^3}{64}=\frac{z^3}{216}\) và \(x^2+y^2-2z^2=-124\)
Bài 2:
a) Hãy chứng minh không có giá trị nào của x thoả mãn: \(\left|x-6\right|+\left|x-7\right|=x-2013\)
b) Tìm x;y và z biết: \(\frac{4}{x+1}=\frac{3}{y-2}=\frac{2}{z-3}\) và x+2y=9