Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đỗ Nguyễn Đức Trung

Cho a+b+c+d\(\ne\)0 và \(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{a+b+c}\)

Tìm giá trị của A=\(\dfrac{a+b}{c+d}=\dfrac{b+c}{a+d}=\dfrac{c+d}{a+b}=\dfrac{d+a}{b+c}\)

Đỗ Nguyễn Đức Trung
6 tháng 11 2017 lúc 22:22

\(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{a+b+c}=\dfrac{a+b+c+d}{3\left(a+b+c+d\right)}\dfrac{1}{3}\)(vìa+b+c+d\(\ne\)0)

=>3a=b+c+d: 3b=a+c+d=>3a-3b=b-a

=>3(a-b)=-(a-b)=>4(a-b)=0=>a=b

Tương tự => a=b=c=d=> A=4

Nguyễn Lưu Vũ Quang
3 tháng 2 2018 lúc 11:31

Ta có: \(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{a+b+c}=\dfrac{a+b+c+d}{3\left(a+b+c+d\right)}=\dfrac{1}{3}\)

Ta có: \(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{a+b}{a+b+2\left(c+d\right)}=\dfrac{1}{3}\)

\(\Rightarrow3\left(a+b\right)=\left(a+b\right)+2\left(c+d\right)\)

\(\Rightarrow2\left(a+b\right)=2\left(c+d\right)\)

\(\Rightarrow a+b=c+d\)

\(\Rightarrow\dfrac{a+b}{c+d}=1\)

Tương tự:\(\dfrac{b+c}{a+d}=1;\dfrac{c+d}{a+b}=1;\dfrac{d+a}{b+c}=1\)

Vậy A=4.


Các câu hỏi tương tự
dấu tên
Xem chi tiết
Ruby
Xem chi tiết
Online Math
Xem chi tiết
okokok
Xem chi tiết
Yui Arayaki
Xem chi tiết
kiwi nguyễn
Xem chi tiết
Thuy Khuat
Xem chi tiết
amano ichigo
Xem chi tiết
Lê Thị Hồng Vân
Xem chi tiết