cái này giống Câu hỏi của ngonhuminh - Toán lớp 10 | Học trực tuyến
cái này giống Câu hỏi của ngonhuminh - Toán lớp 10 | Học trực tuyến
Cho các số \(a;b;c\in\left[\dfrac{1}{2};1\right]\).Tìm maximize of:
\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}+\dfrac{3abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Cho các số thực a,b,c thuộc đoạn [0;1]. Tìm Max
\(P=\dfrac{a}{b+c+1}+\dfrac{b}{a+c+1}+\dfrac{c}{a+b+1}+\left(1-a\right)\left(1-b\right)\left(1-c\right)\)
Cho a,b,c dương.CMR
\(\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\ge2\left(1+\dfrac{a+b+c}{\sqrt[3]{abc}}\right)\)
Cho a,b,c,d là số dương. Cmr
a/ \(\left(a+\dfrac{1}{b}\right)\left(b+\dfrac{1}{c}\right)\left(c+\dfrac{1}{a}\right)\ge8\)
b/ \(\dfrac{a+b+c+d}{4}\ge\sqrt[4]{abcd}\)
cho a,b,c >0 thõa mãn abc = 1
\(CMR:\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{b^3}{\left(1+c\right)\left(1+a\right)}+\dfrac{c^3}{\left(1+a\right)\left(a+b\right)}\ge\dfrac{3}{4}\)
Cho ba số thực duơng a,b,c chứng minh rằng:
\(\left(1+\dfrac{a}{b}\right)\left(a+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\ge2\left(1+\dfrac{a+b+c}{\sqrt[3]{abc}}\right)\)
Cho a,b,c > 0 và abc = 1. Chứng minh
\(\dfrac{1}{\left(a+1\right)^2}+\dfrac{1}{\left(b+1\right)^2}+\dfrac{1}{\left(c+1\right)^2}+\dfrac{1}{a+b+c+1}\ge1\)
Cho a,b,c,d là số dương. Cmr
a/ \(\left(\dfrac{a}{b^3}+\dfrac{b}{c^3}+\dfrac{c}{d^3}+\dfrac{d}{a^3}\right)\left(a+b\right)\left(b+c\right)\ge16\)
b/ \(\dfrac{a+b+c}{\sqrt[3]{abc}}+\dfrac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge4\)
Cho a,b,c là số dương. CMR:
1. \(\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\)
2. \(a^2\sqrt{bc}+b^2\sqrt{ac}+c^2\sqrt{ab}\le a^3+b^3+c^3\)
3. \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{a+b+c}{2}\)