Ta thấy : a+b=c+d => \(\left(a+b\right)^2=\left(c+d\right)^2\)
<=> \(a^2+2ab+b^2=c^2+2cd+d^2\)(1)
Mà \(a^2+b^2=c^2+d^2\)(2)
Từ (1)(2) => 2ab=2cd => ab=cd => \(\frac{a}{d}=\frac{c}{b}=k\)
=> a=dk; c=bk
Ta xét : \(a^2+b^2=c^2+d^2\)
<=> \(\left(dk\right)^2+b^2=\left(bk\right)^2+d^2\)
<=> \(d^2\left(k^2-1\right)=b^2\left(k^2-1\right)\)
<=> \(\left(d^2-b^2\right)\left(k^2-1\right)=0\)
=>\(\left[\begin{array}{nghiempt}d^2-b^2=0\\k^2-1=0\end{array}\right.\)<=> \(\left[\begin{array}{nghiempt}d=\pm b\\k=\pm1\end{array}\right.\)
Th1 :d=\(\pm b\) mà \(\frac{a}{d}=\frac{c}{b}\)=> a=\(\pm c\)
=> \(d^{2002}=b^{2002};a^{2002}=c^{2002}\)
=> \(a^{2002}+b^{2002}=c^{2002}+d^{2002}\)(3)
Th2: k=\(\pm1\) => a\(=\pm d;c=\pm b\)
=> \(a^{2002}=d^{2002};c^{2002}=b^{2002}\)
=> \(a^{2002}+b^{2002}=c^{2002}+d^{2002}\)(4)
Từ (3)(4)=> đpcm
t
Có a2 + b2 = c2 + d2
=> a2 - c2 = d2 - b2
=> (a - c)(a + c) = (d - b)(d + b)
Mà a + b = c + d
=> a - c = d - b
- Nếu a = c
=> a - c = d - b = 0
=> d = b
=> a2002 = c2002 và d2002 = b2002
=> a2002 + b2002 = c2002 + d2002 (Đpcm)
- Nếu a \(\ne\) c
=> a - c = d - b (\(\ne\) 0)
=> d \(\ne\) b
Có (a - c)(a + c) = (d - b)(d + b)
=> a + c = d + b (1)
Mà a + b = c + d (2)
Lấy (1) + (2) ta được:
2a + b + c = b + c + 2d
=> 2a = 2d
=> a = d
=> c = b
=> a2002 = d2002 và c2002 = b2002
=> a2002 + b2002 = c2002 + d2002 (Đpcm)
ta có \(a+b=c+d\)=> \(a-c=d-b\)
ta có \(a^2+b^2=c^2+d^2\)=> \(a^2+b^2-c^2-d^2=0\)=> \(\left(a^2-c^2\right)+\left(b^2-d^2\right)=0\)
=> \(\left(a+c\right)\left(a-c\right)+\left(b+d\right)\left(b-d\right)=0\)
=>\(\left(a+c\right)\left(d-b\right)-\left(b+d\right)\left(d-b\right)=0\)
=>\(\left(d-b\right)\left(a+c-b-d\right)=0\)
=>\(\left[{}\begin{matrix}d-b=0\\a+c-b-d=0\end{matrix}\right.\)=>\(\left[{}\begin{matrix}b=d\\a+c=b+d\end{matrix}\right.\)