Ôn thi vào 10

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hồ Quang Hưng

Cho a,b,c>2 thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\).Chứng minh rằng:(a-2)(b-2)(c-2)≤1.

Trần Tuấn Hoàng
13 tháng 1 2023 lúc 10:28

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)

\(\Rightarrow\dfrac{1}{a}=\left(\dfrac{1}{2}-\dfrac{1}{b}\right)+\left(\dfrac{1}{2}-\dfrac{1}{c}\right)\)

\(\Rightarrow\dfrac{1}{a}=\dfrac{b-2}{2b}+\dfrac{c-2}{2c}\)

Dễ dàng chứng minh \(\dfrac{b-2}{2b},\dfrac{c-2}{2c}\) là các số dương.

Áp dụng BĐT Cauchy cho 2 số dương ta có:

\(\dfrac{b-2}{2b}+\dfrac{c-2}{2c}\ge2\sqrt{\dfrac{\left(b-2\right)\left(c-2\right)}{4bc}}=\sqrt{\dfrac{\left(b-2\right)\left(c-2\right)}{bc}}\)

\(\Rightarrow\dfrac{1}{a}\ge\sqrt{\dfrac{\left(b-2\right)\left(c-2\right)}{bc}}\left(1\right)\)

CMTT ta có: \(\left\{{}\begin{matrix}\dfrac{1}{b}\ge\sqrt{\dfrac{\left(c-2\right)\left(a-2\right)}{ca}}\left(2\right)\\\dfrac{1}{c}\ge\sqrt{\dfrac{\left(a-2\right)\left(b-2\right)}{ab}}\left(3\right)\end{matrix}\right.\)

\(\left(1\right),\left(2\right),\left(3\right)\Rightarrow\dfrac{1}{abc}\ge\dfrac{\left(a-2\right)\left(b-2\right)\left(c-2\right)}{abc}\)

\(\Rightarrow\left(a-2\right)\left(b-2\right)\left(c-2\right)\le1\left(đpcm\right)\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=b=c\\\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\end{matrix}\right.\Leftrightarrow a=b=c=3\)

Hồ Quang Hưng
12 tháng 1 2023 lúc 17:52

Đồng thời chỉ ra phương pháp nhé!!


Các câu hỏi tương tự
VUX NA
Xem chi tiết
hoàng minh chính
Xem chi tiết
VUX NA
Xem chi tiết
VUX NA
Xem chi tiết
Cấn Minh Khôi
Xem chi tiết
VUX NA
Xem chi tiết
VUX NA
Xem chi tiết
VUX NA
Xem chi tiết
𝖈𝖍𝖎𝖎❀
Xem chi tiết