Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho a;b;c là các số thực dương thỏa mãn: \(a^2+b^2+c^2=3\)
Tìm Min của: \(A=\dfrac{a^3}{bc+a^2}+\dfrac{b^3}{ac+b^2}+\dfrac{c^3}{ab+c^2}\)
cho a,b,c >0,a+b+c=3. tìm min Q= \(\dfrac{a^5}{b+c}+\dfrac{b^5}{c+a}+\dfrac{c^5}{a+b}\)
Cho ba số thực dương a,b,c . Tìm giá trị nhỏ nhất của biểu thức :
P = \(\dfrac{1}{\sqrt{ab}+2\sqrt{bc}+2\left(a+c\right)}\) - \(\dfrac{2}{5\sqrt{a+b+c}}\)
Tìm giá trị nhỏ nhất của biểu thức:
a,A=\(\dfrac{x+1}{\sqrt{x}-2}\) với x>4
b,B=\(\dfrac{bc}{a^2b+a^2c}+\dfrac{ac}{b^2a+b^2c}+\dfrac{ab}{c^2a+c^2b}\) với a,b,c>0 và abc=1
mong mọi người giúp mình câu này
cho a,b,c >0 có \(\dfrac{1}{ab}+\dfrac{1}{ac}+\dfrac{1}{bc}=1\) tìm giá trị lớn nhất của \(\dfrac{a}{\sqrt{bc\left(a^2+1\right)}}+\dfrac{b}{\sqrt{ca\left(b^2+1\right)}}+\dfrac{c}{\sqrt{ab\left(c^2+1\right)}}\)
cho a,b,b là các số dương và a2+b2+c2=1. Tìm GTNN của biểu thức:
P=\(\dfrac{bc}{a}\)+\(\dfrac{ac}{b}\)+\(\dfrac{ab}{c}\)
Cho a,b,c là ba số dương thỏa mãn a + b +c = 3 . Chứng minh rằng : \(\dfrac{\sqrt{3a+bc}}{a+\sqrt{3a+bc}}+\dfrac{\sqrt{3b+ac}}{b+\sqrt{3b+ac}}+\dfrac{\sqrt{3c+ab}}{c+\sqrt{3c+ab}}\) ≥ 2
Cho a,b,c là 3 số dương thỏa mãn a+b+c=3. Chứng minh rằng :\(\dfrac{\sqrt{3a+bc}}{a+\sqrt{3a+bc}}+\dfrac{\sqrt{3b+ac}}{b+\sqrt{3b+ac}}+\dfrac{\sqrt{3c+ab}}{c+\sqrt{3c+ab}}\)≥ 2
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\) Chứng minh \(\dfrac{bc}{a^2}+\dfrac{ac}{b^2}+\dfrac{ab}{c^2}\) = 3