Ôn thi vào 10

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
VUX NA

Cho ba số thực dương a,b,c . Tìm giá trị nhỏ nhất của biểu thức : 

P = \(\dfrac{1}{\sqrt{ab}+2\sqrt{bc}+2\left(a+c\right)}\) - \(\dfrac{2}{5\sqrt{a+b+c}}\)

Nguyễn Việt Lâm
21 tháng 8 2021 lúc 14:38

\(\sqrt{ab}+\sqrt{4b.c}+2\left(a+c\right)\le\dfrac{1}{2}\left(a+b\right)+\dfrac{1}{2}\left(4b+c\right)+2\left(a+c\right)=\dfrac{5}{2}\left(a+b+c\right)\)

\(\Rightarrow P\ge\dfrac{2}{5}\left(\dfrac{1}{a+b+c}-\dfrac{1}{\sqrt{a+b+c}}\right)=\dfrac{2}{5}\left(\dfrac{1}{\sqrt{a+b+c}}-\dfrac{1}{2}\right)^2-\dfrac{1}{10}\ge-\dfrac{1}{10}\)

Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}a+b+c=4\\a=b=\dfrac{c}{4}\end{matrix}\right.\) em tự giải ra a;b;c


Các câu hỏi tương tự
VUX NA
Xem chi tiết
Ctuu
Xem chi tiết
Trúc Nguyễn
Xem chi tiết
hoàng minh chính
Xem chi tiết
Aurora
Xem chi tiết
VUX NA
Xem chi tiết
Nguyễn  Thanh Hải
Xem chi tiết
Ngoc Anh Thai
Xem chi tiết
Vangull
Xem chi tiết