\(\dfrac{a}{1+9b^2}=a-\dfrac{9ab^2}{1+9b^2}\ge a-\dfrac{9ab^2}{6b}=a-\dfrac{3}{2}ab\)
Tương tự và cộng lại:
\(T\ge a+b+c-\dfrac{3}{2}\left(ab+bc+ca\right)\ge a+b+c-\dfrac{1}{2}\left(a+b+c\right)^2=\dfrac{1}{2}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)