Ta có: \(a+b+c=0\Rightarrow a+b=-c\Rightarrow\left(a+b\right)^3=\left(-c\right)^3\)
\(\Rightarrow a^3+3a^2b+3ab^2+b^3=-c^3\Rightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)
\(\Rightarrow a^3+b^3+c^3+3ab.\left(-c\right)=0\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow a^3+b^3+c^3=3abc\) => đpcm
Ta có VT=a3+b3+c3
=(a+b)(a2-ab+b2)+c
= -c(a2-ab+b2)+c3
= -c [(a+b)2-3ab-c2]
= -c[ c2-3ab-c2]
= 3abc=VP (đpcm)
Chúc bạn may mắn!