Cho \(tan\alpha=\sqrt{2}\) và biểu thức \(P=\dfrac{sin\alpha-cos\alpha}{sin^3\alpha+3cos^3\alpha+2sin\alpha}=\dfrac{a\left(\sqrt{b}-1\right)}{a+b^3\sqrt{b}}\). Tính tổng \(a+b\):
A. \(5\)
B. \(0\)
C. \(1\)
D. \(3\)
Cho 3 số thực a,b,c thay đổi .Tìm gtln của biểu thức :
P=\(3\sqrt[3]{\dfrac{c^2-3a^2}{6}}-2\sqrt{\dfrac{a^2+b^2+c^2-ab-bc-ca}{3}}\)
a) \(2sin\left(x+\dfrac{\pi}{3}\right)+1=0\)
b) \(1+2sin\left(x-30^o\right)=0\)
c) \(\sqrt{3}+2sin\left(x-\dfrac{\pi}{6}\right)=0\)
d) \(2sin\left(x+10^o\right)+\sqrt{3}=0\)
e) \(\sqrt{2}+2sin\left(x-15^o\right)=0\)
f) \(\sqrt{2}sin\left(x-\dfrac{\pi}{3}\right)+1=0\)
g) \(3+\sqrt{5}sin\left(x+\dfrac{\pi}{3}\right)=0\)
h) \(1+sin\left(x-30^o\right)=0\)
i) \(3+\sqrt{5}sin\left(x-\dfrac{\pi}{6}\right)=0\)
k) \(2\sqrt{2}sin^2x-sin2x=0\)
giải phương trình :
a, \(2x^2-11x+21-3\sqrt[3]{4x-4}=0\)
b, \(\left(3x-2\right)\sqrt{x+1}-x^2-x-2=0\)
c, \(x+4-2\left(\dfrac{x+2}{x-1}\right)\sqrt{\dfrac{x-1}{x+2}}=0\)
Tìm TXĐ của các hàm số sau
\(a,\dfrac{1-cosx}{2sinx+1}\)
\(b,y=\sqrt{\dfrac{1+cosx}{2-cosx}}\)
\(c,\sqrt{tanx}\)
\(d,\dfrac{2}{2cos\left(x-\dfrac{\Pi}{4}\right)-1}\)
\(e,tan\left(x-\dfrac{\Pi}{3}\right)+cot\left(x+\dfrac{\Pi}{4}\right)\)
\(f,y=\dfrac{sinx}{cos^2x-sin^2x}\)
\(g,y=\dfrac{2}{cosx+cos2x}\)
\(h,y=\dfrac{1+cos2x}{1-cos4x}\)
Giải các pt sau:
a) \(\dfrac{\sqrt{3}\left(1-cos2x\right)}{2sinx}=cosx\)
b) \(sin2x+sin^2x=\dfrac{1}{2}\)
c) \(cosx+\sqrt{3}sinx=\dfrac{1}{cosx}\)
d) \(cos7x-\sqrt{3}sin7x+\sqrt{2}=0,x\in\left(\dfrac{2\pi}{5};\dfrac{6\pi}{7}\right)\)
giải pt :
a, (x+5)(2-x)=3\(\sqrt{x^2+3x}\)
b, \(\sqrt[3]{\dfrac{2x}{x+1}}+\sqrt[3]{\dfrac{1}{2}+\dfrac{1}{2x}}=2\)
c,\(\sqrt[5]{\dfrac{16x}{x-1}}+\sqrt[5]{\dfrac{x-1}{16x}}=\dfrac{5}{2}\)
d, \(\sqrt{5x^2+10x+1}=7-2x-x^2\)
e, \(\sqrt{2x^2+4x+1}=1-2x-x^2\)
Cho ba số thực dương a, b, c thoả mãn a+b+c=2 Chứng minh rằng:
\(\dfrac{ab}{\sqrt{2c+ab}}+\dfrac{bc}{\sqrt{2a+bc}}+\dfrac{ca}{\sqrt{2b+ca}}\le1\)
Cho ba số dương a,b,c sao cho : abc=1 .Chứng minh :
\(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge\dfrac{3}{2}\left(a+b+c-1\right)\)