\(\left(\frac{b-c}{a}+\frac{a-c}{b}+\frac{a-b}{c}\right)\left(\frac{a}{b-c}+\frac{b}{a-c}\frac{c}{a-b}\right)\\ < =>\left(\frac{bc\left(b-c\right)}{abc}+\frac{ac\left(a-c\right)}{abc}+\frac{ab\left(a-b\right)}{abc}\right)\left(\frac{a}{b-c}+\frac{bc}{\left(a-b\right)\left(a-c\right)}\right)\\ < =>\left(\frac{b^2-bc-c^2+bc+a^2-ac+ac-c^2+a^2-ab+ab-b^2}{abc}\right)\left(\frac{\left(a-b\right)\left(a-c\right)a}{\left(b-c\right)\left(a-b\right)\left(a-c\right)}+\frac{bc\left(b-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\right)\\ < =>\frac{2a^2-2c^2}{abc}.\left(\frac{a^3-a^2b-a^2c+abc}{\left(b-c\right)\left(a-b\right)\left(a-c\right)}+\frac{b^2c-bc^2}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\right)\)
=> Phần còn lại tự tính nha.