Tử, mẫu không đồng bậc
Đề sai hoặc thiếu điều kiện
tử cộng thêm c^2 bớts c^2
tách tử theo mẫu
cô si mẫu
Tử, mẫu không đồng bậc
Đề sai hoặc thiếu điều kiện
tử cộng thêm c^2 bớts c^2
tách tử theo mẫu
cô si mẫu
cho a,b,c > 0. Tìm GTNN của
\(P=\dfrac{a^2}{\left(a+b\right)^2}+\dfrac{b^2}{\left(b+c\right)^2}+\dfrac{c}{4a}\)
Cho 0<a, b, c<1; ab+bc+ca=1. Tìm GTNN của \(P=\dfrac{a^2.\left(1-2b\right)}{b}+\dfrac{b^2.\left(1-2c\right)}{c}+\dfrac{c^2.\left(1-2a\right)}{a}\)
cho a,b,c>0 thỏa mãn \(2\left(b^2+bc+c^2\right)=3\left(3-a^2\right)\). tìm GTNN của biểu thức \(T=a+b+c+\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\)
cho \(\left(a+b-c\right)^2=ab\) và a,b,c>0 tìm GTNN của \(P=\dfrac{c^2}{a+b-c}+\dfrac{c^2}{a^2+b^2}+\dfrac{\sqrt{ab}}{a+b}\)
Cho a,b,c>0 thỏa mãn a+b+c=3 CMR:
\(\dfrac{a^4}{\left(a+2\right)\left(b+2\right)}+\dfrac{b^4}{\left(b+2\right)\left(c+2\right)}+\dfrac{c^4}{\left(c+2\right)\left(a+2\right)}\ge\dfrac{1}{3}\)
cho a,b,c>0 và abc=1. Tìm min:
\(Q=\dfrac{a^4}{\left(a^2+b^2\right)\left(a+b\right)}+\dfrac{b^4}{\left(b^2+c^2\right)\left(b+c\right)}+\dfrac{c^4}{\left(c^2+a^2\right)\left(c+a\right)}\)
Cho a,b,c>0 tm a+b+c=5. \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\).
C/m\(\dfrac{\sqrt{a}}{2+a}+\dfrac{\sqrt{b}}{2+b}+\dfrac{\sqrt{c}}{2+c}=\dfrac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)
Cho a,b,c >0 và abc=1. Tìm min:
\(P=\dfrac{a^4+b^4}{\left(a^2+b^2\right)\left(a+b\right)}+\dfrac{b^4+c^4}{\left(b^2+c^2\right)\left(b+c\right)}+\dfrac{a^4+c^4}{\left(a^2+c^2\right)\left(a+c\right)}\)
Cho \(\dfrac{a}{b-c}+\dfrac{b}{c-a}+\dfrac{c}{a-b}=0\) . CMR:
\(\dfrac{a}{\left(b-c\right)^2}+\dfrac{b}{\left(c-a\right)^2}+\dfrac{c}{\left(a-b\right)^2}=0\)