Áp dụng bất đẳng thức cho hai số dương
\(\dfrac{1}{\left(a+b\right)}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
Xét \(c+1=c+a+b+c\)
\(\dfrac{ab}{c+1}\le\dfrac{ab}{4\left[\dfrac{1}{a+c}+\dfrac{1}{b+c}\right]}\)
Tương tự:
\(\dfrac{bc}{a+1}\le\dfrac{bc}{4\left[\dfrac{1}{a+c}+\dfrac{1}{b+a}\right]}\)
\(\dfrac{ca}{b+1}\le\dfrac{ac}{4\left[\dfrac{1}{a+b}+\dfrac{1}{c+b}\right]}\)
Cộng lại :
\(\dfrac{ab}{c+1}+\dfrac{bc}{a+1}+\dfrac{ca}{b+1}\le\dfrac{1}{4}\left[\dfrac{ab}{a+c}+\dfrac{ab}{b+c}+\dfrac{bc}{a+c}+\dfrac{bc}{a+b}+\dfrac{ac}{a+b}+\dfrac{ac}{b+c}\right]\)
Rút gọn mẫu số
\(\Rightarrow\dfrac{ab}{c+1}+\dfrac{bc}{a+1}+\dfrac{ca}{b+1}\le\dfrac{1}{4}\left(a+b+c\right)=\dfrac{1}{4}\)