Tìm trước khi hỏi Câu hỏi của Phan Đình Trường - Toán lớp 8 | Học trực tuyến
Tìm trước khi hỏi Câu hỏi của Phan Đình Trường - Toán lớp 8 | Học trực tuyến
Cho a,b,c>0 thỏa mãn : \(ab+bc+ca=0\)
C/m: \(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\ge3+\sqrt{\dfrac{\left(a+b\right)\left(a+c\right)}{a^2}}+\sqrt{\dfrac{\left(b+c\right)\left(b+a\right)}{b^2}}+\sqrt{\dfrac{\left(c+a\right)\left(c+b\right)}{c^2}}\)
Cho a,b,c>0 thỏa mãn a+b+c=3 CMR:
\(\dfrac{a^4}{\left(a+2\right)\left(b+2\right)}+\dfrac{b^4}{\left(b+2\right)\left(c+2\right)}+\dfrac{c^4}{\left(c+2\right)\left(a+2\right)}\ge\dfrac{1}{3}\)
Cho \(a,b,c\le1\). C\m :
\(\dfrac{a\left(b+c\right)}{bc\left(1+a\right)}+\dfrac{b\left(a+c\right)}{ac\left(1+b\right)}+\dfrac{a\left(a+b\right)}{ab\left(1+c\right)}\ge\dfrac{6}{1+\sqrt[3]{abc}}\)
Cho a,b,c là các số thực dương thỏa mãn a+b+c=3. Tìm giá trị nhỏ nhất của biểu thức:
\(P=\dfrac{1}{a\left(b^2+bc+c^2\right)}+\dfrac{1}{b\left(c^2+ca+a^2\right)}+\dfrac{1}{c\left(a^2+ab+b^2\right)}+\dfrac{abc}{ab+bc+ca}\)
Cho a,b,c > 0, a+b+c=3. Tìm Min: P=\(\dfrac{ab}{c^2\left(a+b\right)}+\dfrac{ac}{b^2\left(a+c\right)}+\dfrac{bc}{a^2\left(b+c\right)}\)
\(B=\sqrt{\dfrac{\left(c+bc\right)\left(b+ac\right)}{c+ab}}+\sqrt{\dfrac{\left(c+ab\right)\left(b+ac\right)}{a+bc}}+\sqrt{\dfrac{\left(c+ab\right)\left(a+bc\right)}{b+ac}}\)
(a,b,c là số thực dương và a+b+c=1)
cho a,b,c dương thỏa mãn \(a+b+c=5\) và \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\). CMR: \(\dfrac{\sqrt{a}}{a+2}+\dfrac{\sqrt{b}}{b+2}+\dfrac{\sqrt{c}}{c+2}=\dfrac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)
Cho a,b,c > 0 va :a + b + c = 3. C/m:
\(\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{b^3}{\left(b+c\right)\left(b+a\right)}+\dfrac{c^3}{\left(c+a\right)\left(c+b\right)}\)
cho a,b,c>0 thỏa mãn \(2\left(b^2+bc+c^2\right)=3\left(3-a^2\right)\). tìm GTNN của biểu thức \(T=a+b+c+\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\)