Cho a,b,c >0; a+b+c=1. Chứng minh \(\sqrt{2a+1}+\sqrt{2b+1}+\sqrt{2c+1}< 4\)
cho a,b,c >0 . cmr 1/a + 1/b + 1/c >= 4/(2a+b+c) + 4/(a+2b+c) + 4/(a+b+2c)
giúp mình với các cậu
Cho a,b,c>0. Chứng minh: \(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\)\(\ge\frac{9}{4a+4b+4c}\)
cho ba số thực a,b,c dương thỏa mãn abc=1. chứng minh rằng a/(2b+a) + b/(2c+b) +c/(2a+c) ≥ 1
Cho 0 < a, b, c < 1. Chứng minh: 2a3 + 2b3 + 2c3 < 3 + a2b + b2c + c2a
Cho a + b + c = 0. CMR \(a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)=2\left(ab+bc+ca\right)^2=\dfrac{\left(a^2+b^2+c^2\right)^2}{2}\)
Cho a, b, c > 0. Chứng minh rằng :
\(a+b+c\le\frac{a^2+b^2}{2c}+\frac{b^2+c^2}{2a}+\frac{c^2+a^2}{2b}\)
Cho a, b, c > 0 . CMR:
\(\frac{1}{a+b+c}\ge\frac{a^3}{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}+\frac{b^3}{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}+\frac{c^3}{\left(2c^2+a^2\right)\left(2c^2+a^2\right)}\)
Cho a,b,c là các cạnh của tam giác
Chứng minh BĐT
\(\dfrac{a}{2b+2c-a}+\dfrac{b}{2a+2c-b}+\dfrac{c}{2a+2b-c}\ge1\)
Giúp mình với ......