Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hồ Hoàng Anh Toàn

Cho a+b+c=0; a,b,c≠0. Chứng minh :

\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\)

Trần Thanh Phương
19 tháng 8 2019 lúc 15:30

\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2\left(a+b+c\right)}{abc}}\) ( do \(a+b+c=0\) )

\(=\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}}\)

\(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}\)

\(=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\) ( đpcm )


Các câu hỏi tương tự
Hoàng Quốc Tuấn
Xem chi tiết
Nguyễn Đức Anh
Xem chi tiết
Uchiha Itachi
Xem chi tiết
Uchiha Itachi
Xem chi tiết
Khánh Ngọc
Xem chi tiết
Phạm Băng Băng
Xem chi tiết
Armldcanv0976
Xem chi tiết
Văn Thắng Hồ
Xem chi tiết
Tdq_S.Coups
Xem chi tiết