Sửa đề: ΔABC vuông cân tại A
a: Xét ΔABM và ΔACM có
AB=AC
góc BAM=góc CAM
AM chung
=>ΔABM=ΔACM
b: ΔABC cân tại A có AD là phân giác
nên AD là trung trực của BC
=>M nằm trên trung trực của BC
=>MB=MC
=>góc MBC=góc MCB
Sửa đề: ΔABC vuông cân tại A
a: Xét ΔABM và ΔACM có
AB=AC
góc BAM=góc CAM
AM chung
=>ΔABM=ΔACM
b: ΔABC cân tại A có AD là phân giác
nên AD là trung trực của BC
=>M nằm trên trung trực của BC
=>MB=MC
=>góc MBC=góc MCB
cho tam giác DEF vuông tại D kẻ đường phân giác EM của góc E (M thuộc DF) đường thẳng đi qua D và vuông góc với EM cắt EF tại K a) chứng minh ED=EK b) chứng minh EM là đường trung trực của DK c) so sánh MF và MK
cho ΔABC vuông tại A, có AB=6cm;AC=8cm. a) tính độ dài cạnh BC . b) tia AH có phải là tia phân giác của góc BAC không? vì sao? . c) kẻ tia phân giác BK (K thuộc AC) của góc ABC. gọi O là giao điểm của AH và BK. chứng minh rằng CO là tia phân giác của góc ACB
cho tam giác abc vuông tại b, phân giác ad (d thuộc bc). Qua d kẻ đường thẳng vuông góc với ac tại f.
a, tính bc biết ab=3cm,ac=5cm
b, CM:tam giác bad= tam giác fad
c, CM: ad là trung trực của bf; bd<dc
Cho tam giác ABC có AC = 2AB. Trên cạnh AC lấy điểm M sao cho AM = AB. Trên tia đối của tia BA lấy điểm D sao cho BA = BD. Gọi K là giao điểm của DM và BC.
a,so sánh AK và AC
b, Chứng minh rằng KB = 1/2 KC
c, Qua C kẻ đường thẳng song song với AD, qua D kẻ đường thẳng song song với AC chúng cắt nhau tại E. Chứng minh rằng A, K, E thẳng hàng.
Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ DEBC (EBC).Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh:
1. ABD =EBD
2. BD là đường trung trực của đoạn thẳng AE
3. AD < DC
4. và E, D, F thẳng hàng.
Cho tam giác ABC vuông tại A, đường cao AD. Gọi G là trọng tâm của tam giác. Trên tia đối của tia DG lấy điểm E sao cho DE=DG.
a, BG=GC=CE=BE
b, Nếu CG=AE/2 thì tam giác ABC là tam giác gì
Cho tam giác ABC cân tại A. Kẻ tia phân giác CD (D thuộc AB). Qua D vẽ đường thẳng vuông góc với CD, cắt CB tại F và CA tại K. Ddường thẳng kẻ qua D và // BC cắt AC tại E. Phân giác của gọc BAC cắt DE tại M. Chứng minh rằng:
a) Tam giác CDF và tam giác CDK bằng nhau.
b) Các tam giác DEC và DEK là tam giác cân.
c) CF = 2BD.
d) MD = 1/4CF.
tam giác abc cân tại a có a=40 độ .đường trung trục của ab cắt đường thẳng bc ở d.trên tia đối của ad lấy điểm e sao cho ae=cd.tính các góc tam giác bde
cảm ơn