b: \(BD^2-CD^2\)
\(=BM^2+MD^2-CM^2-MD^2\)
\(=BM^2-CM^2=BM^2-MA^2=BA^2\)
a: AB/AC=2/3 nên HB/HC=4/9
=>HB=4/9x12=48/9=16/3cm
\(AH=\sqrt{\dfrac{16}{3}\cdot12}=\sqrt{16\cdot4}=8\left(cm\right)\)
c: Xét ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)
=>BH(BH+9)=400
=>BH=16cm
=>BC=25cm
\(AC=\sqrt{25^2-20^2}=15\left(cm\right)\)
\(S_{ABC}=\dfrac{15\cdot20}{2}=150\left(cm^2\right)\)